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Contingency: an example

@ Will there be sea battles tomorrow? No!
@ Will there be no sea battles tomorrow? No!
@ Why is it the case?

@ The proposition “there will be sea battles tomorrow” (P) is
contingent, i.e., it is possible that P and it is possible that
not P.



Various readings of contingency



Various readings of contingency

@ Propositional Logic: for some bivaluations we have truth but
not for all



Various readings of contingency

@ Propositional Logic: for some bivaluations we have truth but
not for all

o First-order Logic: for some objects a property is satisfied but
not for all objects



Various readings of contingency

@ Propositional Logic: for some bivaluations we have truth but
not for all

o First-order Logic: for some objects a property is satisfied but
not for all objects

@ Modal Logic: possible but not necessary



Various readings of contingency

@ Propositional Logic: for some bivaluations we have truth but
not for all

o First-order Logic: for some objects a property is satisfied but
not for all objects

@ Modal Logic: possible but not necessary

@ Temporal Logic: sometimes but not always



Various readings of contingency

@ Propositional Logic: for some bivaluations we have truth but
not for all

o First-order Logic: for some objects a property is satisfied but
not for all objects

@ Modal Logic: possible but not necessary
@ Temporal Logic: sometimes but not always

@ Spatial Logic: somewhere but not everywhere



Various readings of contingency

@ Propositional Logic: for some bivaluations we have truth but
not for all

o First-order Logic: for some objects a property is satisfied but
not for all objects

@ Modal Logic: possible but not necessary
@ Temporal Logic: sometimes but not always
@ Spatial Logic: somewhere but not everywhere

@ Deontic Logic: permitted but not obligatory



Various readings of contingency

@ Propositional Logic: for some bivaluations we have truth but
not for all

o First-order Logic: for some objects a property is satisfied but
not for all objects

@ Modal Logic: possible but not necessary

@ Temporal Logic: sometimes but not always

@ Spatial Logic: somewhere but not everywhere
@ Deontic Logic: permitted but not obligatory

@ Epistemic Logic: neither know nor know-not, i.e. ignorance



Various readings of contingency

@ Propositional Logic: for some bivaluations we have truth but
not for all

o First-order Logic: for some objects a property is satisfied but
not for all objects

@ Modal Logic: possible but not necessary

@ Temporal Logic: sometimes but not always

@ Spatial Logic: somewhere but not everywhere

@ Deontic Logic: permitted but not obligatory

@ Epistemic Logic: neither know nor know-not, i.e. ignorance

@ Doxastic Logic: neither believe nor believe-not, i.e.
agnosticism



Various readings of contingency

@ Propositional Logic: for some bivaluations we have truth but
not for all

o First-order Logic: for some objects a property is satisfied but
not for all objects

@ Modal Logic: possible but not necessary

@ Temporal Logic: sometimes but not always

@ Spatial Logic: somewhere but not everywhere

@ Deontic Logic: permitted but not obligatory

@ Epistemic Logic: neither know nor know-not, i.e. ignorance

@ Doxastic Logic: neither believe nor believe-not, i.e.
agnosticism



Relating necessity and (non-)contingency

@ (Non-)contingency can be defined with necessity
[Montgomery and Routley, 1966]:

Ap =4 Op V O-ep.

Vi =g4r ~Ap.

A: non-contingency
V: contingency
O: necessity



Q1: the definability of O

@ Is O definable in terms of A?
© Oy =4 Ap A ¢ [Montgomery and Routley, 1966], only in the
systems containing Oy — ¢ [Segerberg, 1982, page 128]

@ O can only be defined in terms of A in the Verum system, or
the systems containing Oy — O [Cresswell, 1988]

© With Contingency Postulate, Oy =4 Vp(A(p A ¢) = Ap)
[Pizzi, 1999]

@ With the axiom V7 (7 is a propositional constant),
Oy =ar Ap A A(T — ) [Pizzi, 2006, Pizzi, 2007]

Q Xy =4 /\weNCL A — ), K behaves like, but differs from
O [Zolin, 2001]

None of them is satisfactory!



Q2: fragment

o Ago =df D(p\/[]—%p
e NCLC ML

@ What is the exact fragment?



. axiomatizing NCL over symmetric frames

Usual frame classes

Known results

ZToHE9A

[Humberstone, 1995, Kuhn, 1995, Zolin, 1999]
[Humberstone, 1995, Zolin, 1999]
[Montgomery and Routley, 1966]

[Kuhn, 1995, Zolin, 1999]

[Zolin, 1999]

?




Main results of the paper

@ Is O definable in terms of A in the general case?
— almost-definability schema

@ How to characterize non-contingency logic within modal logic?
—— A-bisimulation and characterization fragement

@ axiomatizing NCL on B
—— axiomatization NCLB and completeness

@ Multimodal Non-contingency Logic: axiomatization and
completeness



Non-contingency logic: Language

NCL pu=T|pl-p|(pAp)]| Ay

ML pu=T|pl-p|(pAp)]|DOp

e A: it is non-contingent that ¢.
o Vi =4r 7A¢p: it is contingent that ¢.



Non-contingency logic: Semantics

M,sE Ap < for any ty, tp such that sRt;, sRt :
M,t1Fpe M bEp)

-p P

| e

s:Ap s:Ap s:Ap s:Ap———p

—0



Non-contingency logic is not normal

Even on S5-models,
FA(p — ) = (Ap — AY)

e.g., ) O

M:  s:i-p,q —p,q
M,;sEA(p— qg) A\ Ap, but M,s ¥ Ag.




Almost-definability

@ Under a condition V1 for some v, O is definable with A

Proposition

E VY = (Op < Ap AA(Y — @)




Standard bisimulation

Definition (O-Bisimulation)

Let M = (S,R,V) and M’ = (S, R, V') be two models. A
binary relation Z is a O-bisimulation between M and M’, if Z is
non-empty and whenever sZs’:
@ (Invariance) s and s’ satisfy the same propositional variables;
o (O-Zig) if sRt, then there is a t' in M’ such that s'R’t’ and
tZt’;
o (O-Zag) if s'R't’, then there is a t in M such that sRt and
tZt'.

We say that (M, s) and (M',s") are O-bisimilar, if there is a
O-bisimulation linking two states s in M and s’ in M’, and we

write (M, s) €g (M',s).




O-bisimulation is too strong for NCL

(M,S) =NCL (M/,Sl) but (M,S) ﬁ[\ (M’,Sl)



Almost-definability: Revisited

Vi = (Op < Ap AA(p — )

@ Under a condition V1 for some v, O is definable with A

t1: Y

7

s:VY——=t v

e t; and tp are non-NCL-equivalent (Semantic reading)

@ (t1,tp) are not bisimilar (Structural counterpart)



Bisimulation for NCL

Definition (A-Bisimulation)

Let M = (S, R, V) be a model. A binary relation Z over S is a
A-bisimulation on M, if Z is non-empty and whenever sZs’:

@ (Invariance) s and s’ satisfy the same propositional variables;

@ (A-Zig) if there are two successors t1, tp of s such that
(t1,t) ¢ Z and sRt, then there is a t’ such that s’Rt’ and
tZt';

@ (A-Zag) if there are two successors t1, t; of s’ such that
(t1,t5) ¢ Z and s'Rt’, then there is a t such that sRt and
tZt'.

We say (M, s) and (M’,s") are A-bisimilar, notation:
(M, s) & (M',s), if there is a A-bisimulation linking s and s’
in the disjoint union of M and M’.




A-bisimilarity: an example

M s':p

(M, s) =ncL (MI,SI) but (M, s) #o (./\/l/,sl)

(M,s) &p (M')S)



< is strictly weaker than <o

Proposition

o (M,s) 20 (N, t) = (M, s) &a (N, t)
o (M,s) & (N, t) &= (M,s) € (N, t)




<A Is suitable for NCL

Proposition

o (M,s) &p (M',s') = (M,s) =ncL (M, 5)

@ For any NCL-saturated pointed models (M, s) and (N, t),
(M,s) €a (N, t) <= (M, s) =ncL (N, 1)

@ A model M is said to be NCL-saturated, if given any
s € M, any £ C NCL, if X is finitely satisfiable in R(s),
then X is satisfiable in R(s).



NCL-saturation is necessary

Without the condition ‘NCL-saturation’,
(M, s) =ncL (N, t) 7= (M, s) €a (N, t).



Applications of A-bisimulation

© The property "“is an endpoint” is undefinable in NCL.

@ The frame properties of seriality, reflexivity, transitivity,
symmetry, and Euclidicity are not definable in NCL.

© NCL /s less expressive than ML on the class of symmetric
(and many other) models.

Take 2 for instance.

Fi: S1 t u Fo )

Ol

v




Two characterization results

An ML-formula is equivalent to an NCL-formula iff it is invariant
under A-bisimulation.

A first-order formula is equivalent to an NCL-formula iff it is
invariant under A-bisimulation.




Proof system for K-frames

NCL:

TAUT all instances of tautologies
ACon A(x — @) NA(—x — ) = Agp
ADis Ay — A(p = ¥) V A(=p — x)
AEqu Ap < A-p

MP From ¢ and ¢ — ¢ infer ¢
NECA From ¢ infer Ayp
REA  From ¢ <> v infer Ap < Ay

NB: NECA is indispensable in NCL

Proposition
NCL is sound with respect to the class of K-frames.
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Proof methods for the completeness of NCIL: an overview

@ NCL is not normal, and the usual frame properties are
undefinable in NCL, which make the completeness proof
non-trivial

@ simulate the canonical relation in standard modal logic. How?

@ Humberstone [Humberstone, 1995]: sR¢t iff A\(s) C t, where
A(s) ={¢ | Ap € s and for all Y, ¢ — ) implies Ay € s}

e Kuhn [Kuhn, 1995]: skt iff A\(s) C t, where
A(s) ={p | for every » € NCL,A(p V) € s}

@ Zolin [Zolin, 1999]: sR<t iff #(s) C t, where
#(s) = {¢ | Ky C s}, in which
Mo = {A( — ¢) | ¥ € NCL}

@ NB: Kuhn's A and Zolin's § are the same function



Limitations

@ Humberstone [Humberstone, 1995]:
A(s) ={¢ | Ap € s and for all Y, ¢ — ) implies Ay € s}
is responsible for the infinitary axiomatization, and the
completeness proof requires Konig's Lemma
e Kuhn [Kuhn, 1995] and Zolin [Zolin, 1999]:
o The necessity operator, defined by Ky =4r A, cncL Aw V),

is not really d. E.g., ¢ — X=X —¢ is not valid on the class of
symmetric frames [Zolin, 2001].

e The canonical relations in [Kuhn, 1995, Zolin, 1999] at least
do not apply to the reflexive frames, a fortiori, they do not
apply to the symmetric frames [Humberstone, 2002, page 118].
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A uniform method

Key part in the canonical model construction: the definition of
canonical relation.

Definition (Canonical model)

Define M€ = (5¢, R, V€) as follows:
@ 5S¢ = {s| s is a maximal consistent set of NCL}
@ For all s, t € §¢, sR¢t iff there exists x such that:

e -Ax € s, and
o for all o, Ap A A(x — ¢) € s implies ¢ € t.

o Vé(p)={se S| pes}.

v

e Standard modal logic: sR€t iff for all ¢, Oy € s implies ¢ € t
e Almost-definability: =Ax — (Op <> Ap A A(x — ¢))



Completeness for NCIL

For all p € NCL and s € S, M€,skE ¢ iffp € s. \
NCL is complete with respect to the class of K-frames.




Axiomatization: extensions

Notation | Axiom Schemas Systems

AT Ap ANA(p = V)N p = AY NCLT = NCL + AT
A4 Ap — A(Ap V) NCL4 = NCL + A4

A5 —Ap = A(-Ap V1) NCL5 = NCL + A5

AB © = A((Ap AA(p — ) A—-AY) = x) | NCLB = NCL + AB
wA4 Ap — AAyp NCLS4 = NCLT + wA4
wAb —Ap — A-Ap NCLS5 = NCLT + wA5

@ NECA is admissible in NCLB, different from other systems
@ Completeness results w.r.t. corresponding classes of frames

@ apply to multimodal cases, except for that of NCLB



Proof system for the symmetric frames

NCLB: (NB: no need of the rule (NECA): ALZO)

TAUT  all instances of tautologies

ACon A(x — @) NA(—x — ) = Ap

ADis Ay — A(p = ) V A(=p — X)

AEqu Ap < A-p

AB o = A((Ap AN A(p = ) A —=AY) — x)

MP From ¢ and ¢ — % infer ¢
REA  From ¢ < % infer Ap <> Ay

Proposition
NCLB is sound with respect to the class of symmetric frames.




Pseudo-Canonical Model

Definition (Pseudo-Canonical Model)

Define M€ = (§¢, R, V€) as follows:
@ 5S¢ ={s| s is a maximal consistent set of NCLB}
@ For all s,t € 5¢, sR¢t iff there exists x such that:

e Ay € s, and
o for all o, Ap A A(x — ¢) € s implies ¢ € t.

o Vé(p)={se S| pes}.

\

Lemma (Pseudo-Truth Lemma)

For all o € NCL and s € S, M€ sk ¢ iffp € s.




R¢ is not symmetric

Proposition
For any s,t € 5S¢, if sR°t and ~Ax € t for some , then tR¢s.

1

sR¢t iff there exists x such that:

—

— U

e -Ayx € s, and
e for all ¢, Ap AN A(x — @) € s implies ¢ € t.



Turn M€ into a symmetric model



Turn M€ into a symmetric model

t t
Split the world t:
s u = s u = s u

\ / oo b
t (s,t) (u,t) (s,t) (u,t)



Canonical Model of NCLB

The canonical model M™ of NCLB is a tuple (ST, RT, f, V) where:
@ St =DU{(s,t)| t € D,sR°t}

@ sR™t iff one of the following cases holds:
Q st € D and sR¢t,
@ scDandt=(s,s)ecST,
Q@ teDands=(t,t')eST .
@ f is a function assigning each state in ST to a maximal consistent

set in S such that f(s) = s for s € D, and f((s, t)) = t for
(s,t) e ST.

o VH(p)={s€S*|pef(s))

where D = {t | t € §¢, Ax € t for all x, and there exists an
s € 5¢ such that sRt }, where S¢ and R are defined as in
Definition 25, and D = S°\D.



f acts like a surjective bounded morphism

Q 1 is surjective.

@ s and f(s) satisfy the same propositional variables.
© ifs € D then sR*t implies f(s)Rf(t).

Q if f(s)RCt then there exists u € ST such that f(u) = t and
sR*u.




M is desired canonical model

Lemma

M is symmetric.

| A\

Proposition

M preserves the truth values of formulas w.r.t. f. That is:
for any s € ST and any ¢ € NCL, we have

MY sk &= M f(s)F .

N




Completeness of NCILB

NCLB is (sound and) strongly complete with respect to the class
of symmetric frames.




Multimodal NCL

Language (i € I, where | is finite)

eu=T|p|-e|(eAp)|Aip]|Dip

O;p: @ is necessary for agent |
Ajp: p is non-contingent for agent i, i.e., for i, ¢ is
necessarily true or ¢ is necessarily false.

@ Semantics
M,sE Ajp <& for any ty, tr such that sR;ty, sRity :
(M,tl ':g0<:>./\/l,t2':g0)
@ Multimodal NCL is not normal

Almost-definability

E Vi — (Oip < Ajp AN (Y — @)



Proof system for the symmetric frames: Multimodal case

NCLB,,

TAUT all instances of tautologies

ACon Ai(x = @) NAi(—x — ¢) = Ajp

ADis Ajp — Ai(e = ¥) V Ai(—p — X)

AEqu Ajp < Aj—p

AB = Di((Aip AAi(p — ) AN=AD) = x)

MP From ¢ and ¢ — % infer ¢
REA  From ¢ < 1 infer Ajp < Ajop

Proposition
NCLB,, is sound with respect to the class of symmetric frames.




Pseudo-Canonical Model: again

Definition (Pseudo-Canonical Model)

Define M€ = (5¢,{—=¢| i € I}, V°) as follows:
@ 5¢ = {s|sis a maximal consistent set of NCLB,}

@ Forall st € S, forall i €1, s =¢ t iff there exists x such
that
Q@ —Ajx€s, and
@ for all p, Ajp AAi(x — ) € s implies p € t.

o Vé(p)={se S| pes}.

e Standard multi-modal logic: s —¢ t iff O;p € s implies p € t
e Almost-definability: —=A;x — (O;¢ <> Ajp A Ai(x — ¢))



Pseudo-Truth Lemma: again

For all p € NCL and s € S¢, M€ sk ¢ iffp € s. \




— ¢ Is not symmetric

Proposition

For any s,t € S and any i € |, if s =§ t and t —¢ t' for some
t' € S5, then t —¢ s.

@ The canonical model for NCILB cannot be generalized into
NCLB,,

@ The dead ends are relative to the agents
@ A dead end for agent j may be not a dead end for agent i

@ Need new strategy



New Strategy: turn M€ into a symmetric model

Enumerate all of the agentsin 1 as 1,2,3,--- ., m. Starting from
MO = M€ (we may as well assume that M€ has run out of Prop.
27), we construct the desired model (call it M™) in m steps.

@ In each step we tackle the dead ends for that agent, by
replacing those dead ends with some new copies of themselves
such that each copy has only one incoming transition for that
agent and then adding the back arrows for the agent

@ while keeping all the arrows for the other agents in place, with
corresponding replacements for the dead ends. We have to
provide that

@ In each step, the accessibility relation for that agent is
symmetric,

@ The symmetry of the previous relation for a fixed agent is not
broken, which guarantee M™ to be symmetric

© Each step preserves the truth values of formulas



An example

t Q\U Sg}l (S, t) 2 (S’ u)
(s, (s.1)) <—>[
2 ((s,u).(5,8) 5= (s,0)



Canonical model M™ of NCLEB,,

Define M™ = (S, {=| i € I},f™, V™) by induction on n < m:
o S0=5¢

o S"=D,U{(s,t) | t € D, and s »""1 t}, where
D,={t|te S thereisnot' € S" ! such that t =71
t’ and there exists an s € S"! such that s =771 t},
Dy = S"1\D,




Canonical model M™ of NCLEB,,

Definition (Cont")
Define M™ = (S™,{—=| i € I},f™ V™) by induction on n < m:

o —0=—yc

o s — t iff one of the following cases holds:
Q@ s, tcD,ands =1t
@ scD,and t =(s,5') € S",
@ teD,ands=(tt)eS"

@ For i # n, s —7 t iff one of the following cases holds:
Q s,tcD,ands %7_1 t,

@ scDyandt=(s",s')€S"and s =771 ¢,

© teD,and s = (t”,t') € S" and t’ —>7_1 t,

Q@ s=(w,v)eS"and t=(w,v/)€S"and v =71 V.




Canonical model M™ of NCLEB,,

Definition (Cont’)
Define M™ = (S™ {—="| i € 1},f™, V™) by induction on n < m:
o "1 is a function from S"*! to §” such that f"*1(s) = s for
s € Dyy1, and F™1((s,t)) = t for (s,t) € S™H1

o VOp)={seS°|pcs}and
V™Hi(p) = {s € S" | f*i(s) € V(p)}




Properties of f"*!

Proposition (Preservation)
Given any s, t € S"TLIf fnTl(s) —0 f7T1(t), then
Q Ifi#n+1, thens -t

@ Ifi=n+1, then for some t' € S"™1 such that s —>7+1 t’ and
FrHL(t) = FrHL(t).

Proposition (No Miracle)

Given any s, t € S"1L.
Q Ifi#n+1, thens =" t implies f™1(s) =7 f71(¢).

@ Ifi=n+1ands € Dyi1, then s -7 t implies
P () =0 )

For every n € [0, m — 1], "1 is surjective!



M™ is symmetric

Proposition
M™ is symmetric. That is, for all i € [1, m], = is symmetric:
@ For every n € [1, m], = is symmetric.

+1

Q If =7 is symmetric, then —7"" is also symmetric.




Truth-preserving in each step

Proposition

For any n € [0,m — 1], any s € S"*!, and any » € NCL,

ML s E Y <= M", f”+1(s) F .




Completeness of NCLLB,,

Define f = flof20---0f™.
o f:S5™— SYis surjective.
@ For any s € §™ and any ¢ € NCL, we have

MT sk p <= pef(s)

NCLB,, is strongly complete with respect to the class of
symmetric frames.




Dynamified multimodal NCL

@ Adding public announcements:

[e]Ai) < (@ = (Ailel V Ailp]))

@ Adding action models:

[M,s]A < (pre(s) = /\ (AiM, t]y v Aj[M, t]-¢))

s—it

@ Completeness, Decidability



Muddy Children Puzzle

011 a 111 011 a 111 011 a 111
7 7 7 7 7
c c c c c
7 7/ 4 7
010 ——2a 110 010 —a 110 110 110
‘ b ‘ b ‘ b
b ‘ ‘ ‘ b ‘ ‘
001 a—|— 101 001 a—|— 101 101
7 7 7
c c c
7/ 7 7
000 a 100 100

M0 E [Viy milIAL, Vimi]~(AL, Vim))
M 110 F [V miIALy Vimil(A\—y Aimi A V3m3)
M0 E Vi mil[AFZy Vimi] [\, Aimi]Azms
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Comparison with the known axiomatizations

@ Our system NCL is closest to Kuhn's KA, except that our
axiom ACon differs from axiom Ap A V(¢ A1) — V1) there.

@ Our proof method is based on the almost-definability schema,
which is very different from the methods used in the literature.
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@ Our system NCL is closest to Kuhn's KA, except that our
axiom ACon differs from axiom Ap A V(¢ A1) — V1) there.

@ Our proof method is based on the almost-definability schema,
which is very different from the methods used in the literature.

© Almost-definability schema also inspires a notion of
bisimulation for NCL (called 'A-bisimulation’) and two
characterization fragments

@ We really define necessity in terms of non-contingency in the
general sense.

© Our method can work for all the usual frame properties in a
rather uniform fashion, among which the cases for symmetric
axiomatizations are highly non-trivial, which were missing in
the literature.

@ We extend the results to public announcements and action
models, which were not discussed in the literature of
non-contingency logic.



Conclusion

@ Almost-definability schema Vi) — (Op <> Ap A A — ¢))

©

A-bisimulation and two characterization fragments

© Axiomatizations of NCL over various frames, via a rather
uniform method, where the cases for symmetric frames are
highly non-trivial
e Unimodal

e Multimodal

@ Dynamic extensions of NCL

© Comparison with the known axiomatizations



Future work

@ Contingency logic and other semantics, such as neighborhood
semantics (a manuscript under submission with Hans van
Ditmarsch), topological semantics (c.f. [Steinsvold, 2008])

@ The relative succinctness of NCL and ML on S5 (in the K
case, see [van Ditmarsch et al., 2014]).

© Contingency syllogisms, Contingency logic and First-order
logic (c.f. [Brogan, 1967, Béziau, 2000, Read, 2012])

@ Contingency logic and Temporal operators, e.g. future
contingents

© Contingency logic and Epistemology concepts, such as
Knowledge, Belief [Costa-Leite, 2007] (general frame classes),
Ignorance [van der Hoek and Lomuscio, 2004] and Knowing
whether [Fan et al., 2013]

@ Common ignorance, or common knowing whether



Future work (cont’)

Arbitrary Knowing Whether Logic (an ongoing joint work with
Hans van Ditmarsch)

pu=plop|oAe | Ap | 40

@ Related to Arbitrary Public Announcement Logic
[Balbiani et al., 2007, Balbiani et al., 2008,
Balbiani and van Ditmarsch, 2014]
e M,s F 4y iff there is a #-free 1) such that M, s E (1¢)yp
Related to Fitch's Knowability Paradox: F ¢ — ¢Oy?
¥ o — 40p, e.g., Moore-sentence p A —~Op
F #(0O¢ v O-yp) [van Ditmarsch et al., 2012]
For every proposition we can get to know whether it is true.
F Ay (equivalently, F -BV )
AKW Expressivity? Axiomatization? Decidability?



Future work (cont’)

Various kinds of knowledge and their logical representations
(beyond ‘knowing that'):

e Knowing Whether [Fan et al., 2013]

e HWI1H

Knowing What [Wang and Fan, 2013, Wang and Fan, 2014]
Knowing Who

Knowing When

Knowing Where

Knowing Why

Knowing How



Publications and Submissions

@ Publications:

@ J. Fan, Y. Wang and H. van Ditmarsch. Almost Necessary.
Advances in Modal Logic, Volume 10, pages 178-196, 2014.

@ H. van Ditmarsch, J. Fan, W. van der Hoek, P. lliev. Some
Exponential Lower Bounds on Formula-size in Modal Logic.
Advances in Modal Logic, Volume 10, pages 139-157, 2014.

© Y. Wang and J. Fan. Conditionally Knowing What. Advances
in Modal Logic, Volume 10, pages 569-587, 2014.

© Y. Wang and J. Fan. Knowing That, Knowing What, and
Public Communication: Public Announcement Logic with Kv
Operators, Proc. of 23rd IJCAI, pages 1147-1154, 2013.

@ J. Fan, Y. Wang and H. van Ditmarsch. Contingency and
Knowing Whether. To appear in The Review of Symbolic
Logic.

@ Y. Wang and J. Fan. Epistemic Informativeness. To appear in
the Proceedings of the Second Asian Workshop on
Philosophical Logic.



Publications and Submissions (cont’)

@ Submissions:

© J. Fan and H. van Ditmarsch. Neighborhood Contingency
Logic. Submitted to Indian Conference on Logic and its
Applications (ICLA 2015), August 2014.



CELLO, LORIA-CNRS/Université de Lorraine

Computational Epistemic Logic in LOrraine, led by Hans van
Ditmarsch, who is the holder of ERC starting grant 313360 EPS,
called Epistemic Protocol Synthesis.




Activities

@ personal meeting between Hans van Ditmarsch and |, for my
research progress (once a week)

o CELLO group meeting, for Hans's project (once a week)
@ Academic conferences
e 10th Advances in Modal Logic (AiIML 2014), August 5 —
August 8, University of Groningen, The Netherlands.
Presentation “Almost Necessary”.
e 26th European Summer School in Logic, Language and
Information (ESSLLI 2014), August 11 — August 22, University
of Tiibingen, Germany.



PKU & RuG: AiML 2014




Thank you for your attention!
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