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Contingency: an example

Will there be sea battles tomorrow? No!

Will there be no sea battles tomorrow? No!

Why is it the case?

The proposition “there will be sea battles tomorrow” (P) is
contingent, i.e., it is possible that P and it is possible that
not P.
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Various readings of contingency

Propositional Logic: for some bivaluations we have truth but
not for all

First-order Logic: for some objects a property is satisfied but
not for all objects

Modal Logic: possible but not necessary

Temporal Logic: sometimes but not always

Spatial Logic: somewhere but not everywhere

Deontic Logic: permitted but not obligatory

Epistemic Logic: neither know nor know-not, i.e. ignorance

Doxastic Logic: neither believe nor believe-not, i.e.
agnosticism

· · ·
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Relating necessity and (non-)contingency

(Non-)contingency can be defined with necessity
[Montgomery and Routley, 1966]:

∆ϕ =df 2ϕ ∨2¬ϕ.

∇ϕ =df ¬∆ϕ.

∆: non-contingency
∇: contingency
2: necessity
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Q1: the definability of 2

Is 2 definable in terms of ∆?

1 2ϕ =df ∆ϕ ∧ ϕ [Montgomery and Routley, 1966], only in the
systems containing 2ϕ→ ϕ [Segerberg, 1982, page 128]

2 2 can only be defined in terms of ∆ in the Verum system, or
the systems containing 2ϕ→ 3ϕ [Cresswell, 1988]

3 With Contingency Postulate, 2ϕ =df ∀p(∆(p ∧ ϕ)→ ∆p)
[Pizzi, 1999]

4 With the axiom ∇τ (τ is a propositional constant),
2ϕ =df ∆ϕ ∧∆(τ → ϕ) [Pizzi, 2006, Pizzi, 2007]

5 �ϕ =df

∧
ψ∈NCL ∆(ψ → ϕ), � behaves like, but differs from

2 [Zolin, 2001]

None of them is satisfactory!
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Q2: fragment

∆ϕ =df 2ϕ ∨2¬ϕ

NCL ⊆ML

What is the exact fragment?



Introduction Non-contingency Logic and Almost-definability Bisimulation and Characterization Axiomatizations Multimodal Non-contingency Logic Dynamified Multimodal Non-contingency Logic Conclusion

Q3: axiomatizing NCL over symmetric frames

Usual frame classes Known results

K [Humberstone, 1995, Kuhn, 1995, Zolin, 1999]
D [Humberstone, 1995, Zolin, 1999]
T [Montgomery and Routley, 1966]
4 [Kuhn, 1995, Zolin, 1999]
5 [Zolin, 1999]
B ?
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Main results of the paper

Is 2 definable in terms of ∆ in the general case?
—– almost-definability schema

How to characterize non-contingency logic within modal logic?
—– ∆-bisimulation and characterization fragement

axiomatizing NCL on B
—– axiomatization NCLB and completeness

Multimodal Non-contingency Logic: axiomatization and
completeness
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Non-contingency logic: Language

NCL ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | ∆ϕ

ML ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | 2ϕ

∆ϕ: it is non-contingent that ϕ.

∇ϕ =df ¬∆ϕ: it is contingent that ϕ.
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Non-contingency logic: Semantics

M, s � ∆ϕ ⇔ for any t1, t2 such that sRt1, sRt2 :
(M, t1 � ϕ⇔M, t2 � ϕ)

p ¬p

s : ∆p s : ∆p

OO

s : ∆p

OO p

s : ¬∆p

::

// ¬p
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Non-contingency logic is not normal

Even on S5-models,

2 ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

e.g.,
M : s : ¬p,¬q

��
// ¬p, q
��oo

M, s � ∆(p → q) ∧∆p, but M, s 2 ∆q.
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Almost-definability

Under a condition ∇ψ for some ψ, 2 is definable with ∆

Proposition

� ∇ψ → (2ϕ↔ ∆ϕ ∧∆(ψ → ϕ))
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Standard bisimulation

Definition (2-Bisimulation)

Let M = 〈S ,R,V 〉 and M′ = 〈S ′,R ′,V ′〉 be two models. A
binary relation Z is a 2-bisimulation between M and M′, if Z is
non-empty and whenever sZs ′:

(Invariance) s and s ′ satisfy the same propositional variables;

(2-Zig) if sRt, then there is a t ′ in M′ such that s ′R ′t ′ and
tZt ′;

(2-Zag) if s ′R ′t ′, then there is a t in M such that sRt and
tZt ′.

We say that (M, s) and (M′, s ′) are 2-bisimilar, if there is a
2-bisimulation linking two states s in M and s ′ in M′, and we
write (M, s)↔2 (M′, s ′).
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2-bisimulation is too strong for NCL

Example

M : s : p // t : p

M′ : s ′ : p

(M, s) ≡NCL (M′, s ′) but (M, s) 6↔2 (M′, s ′)
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Almost-definability: Revisited

∇ψ → (2ϕ↔ ∆ϕ ∧∆(ψ → ϕ))

Under a condition ∇ψ for some ψ, 2 is definable with ∆

t1 : ¬ψ

s : ∇ψ

99

// t2 : ψ

t1 and t2 are non-NCL-equivalent (Semantic reading)

(t1, t2) are not bisimilar (Structural counterpart)
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Bisimulation for NCL

Definition (∆-Bisimulation)

Let M = 〈S ,R,V 〉 be a model. A binary relation Z over S is a
∆-bisimulation on M, if Z is non-empty and whenever sZs ′:

(Invariance) s and s ′ satisfy the same propositional variables;

(∆-Zig) if there are two successors t1, t2 of s such that
(t1, t2) /∈ Z and sRt, then there is a t ′ such that s ′Rt ′ and
tZt ′;

(∆-Zag) if there are two successors t ′1, t
′
2 of s ′ such that

(t ′1, t
′
2) /∈ Z and s ′Rt ′, then there is a t such that sRt and

tZt ′.

We say (M, s) and (M′, s ′) are ∆-bisimilar, notation:
(M, s)↔∆ (M′, s ′), if there is a ∆-bisimulation linking s and s ′

in the disjoint union of M and M′.
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∆-bisimilarity: an example

Example

M : s : p // t : p

M′ : s ′ : p

(M, s) ≡NCL (M′, s ′) but (M, s) 6↔2 (M′, s ′)

(M, s)↔∆ (M′, s ′)
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↔∆ is strictly weaker than ↔2

Proposition

(M, s)↔2 (N , t) =⇒ (M, s)↔∆ (N , t)

(M, s)↔∆ (N , t) 6=⇒ (M, s)↔2 (N , t)
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↔∆ is suitable for NCL

Proposition

(M, s)↔∆ (M′, s ′) =⇒ (M, s) ≡NCL (M′, s ′)

For any NCL-saturated pointed models (M, s) and (N , t),
(M, s)↔∆ (N , t)⇐⇒ (M, s) ≡NCL (N , t)

A model M is said to be NCL-saturated, if given any
s ∈M, any Σ ⊆ NCL, if Σ is finitely satisfiable in R(s),
then Σ is satisfiable in R(s).
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NCL-saturation is necessary

Without the condition ‘NCL-saturation’,
(M, s) ≡NCL (N , t) 6=⇒ (M, s)↔∆ (N , t).

s

�� $$ )) ++

M

1 : p1 2 : p2 3 : p3 . . .

t

�� $$ )) ++

// ω N

1 : p1 2 : p2 3 : p3 . . .
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Applications of ∆-bisimulation

Proposition

1 The property “is an endpoint” is undefinable in NCL.

2 The frame properties of seriality, reflexivity, transitivity,
symmetry, and Euclidicity are not definable in NCL.

3 NCL is less expressive than ML on the class of symmetric
(and many other) models.

Proof.

Take 2 for instance.

F1 : s1
// t // u F2 : s2

��



Introduction Non-contingency Logic and Almost-definability Bisimulation and Characterization Axiomatizations Multimodal Non-contingency Logic Dynamified Multimodal Non-contingency Logic Conclusion

Two characterization results

Theorem

An ML-formula is equivalent to an NCL-formula iff it is invariant
under ∆-bisimulation.

Theorem

A first-order formula is equivalent to an NCL-formula iff it is
invariant under ∆-bisimulation.
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Proof system for K-frames

NCL:

TAUT all instances of tautologies
∆Con ∆(χ→ ϕ) ∧∆(¬χ→ ϕ)→ ∆ϕ
∆Dis ∆ϕ→ ∆(ϕ→ ψ) ∨∆(¬ϕ→ χ)
∆Equ ∆ϕ↔ ∆¬ϕ

MP From ϕ and ϕ→ ψ infer ψ
NEC∆ From ϕ infer ∆ϕ
RE∆ From ϕ↔ ψ infer ∆ϕ↔ ∆ψ

NB: NEC∆ is indispensable in NCL

Proposition

NCL is sound with respect to the class of K-frames.
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Proof methods for the completeness of NCL: an overview

NCL is not normal, and the usual frame properties are
undefinable in NCL, which make the completeness proof
non-trivial

simulate the canonical relation in standard modal logic. How?

Humberstone [Humberstone, 1995]: sRct iff λ(s) ⊆ t, where
λ(s) = {ϕ | ∆ϕ ∈ s and for all ψ,` ϕ→ ψ implies ∆ψ ∈ s}
Kuhn [Kuhn, 1995]: sRct iff λ(s) ⊆ t, where
λ(s) = {ϕ | for every ψ ∈ NCL,∆(ϕ ∨ ψ) ∈ s}
Zolin [Zolin, 1999]: sRct iff ](s) ⊆ t, where
](s) = {ϕ | �ϕ ⊆ s}, in which
�ϕ = {∆(ψ → ϕ) | ψ ∈ NCL}
NB: Kuhn’s λ and Zolin’s ] are the same function
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Limitations

Humberstone [Humberstone, 1995]:
λ(s) = {ϕ | ∆ϕ ∈ s and for all ψ,` ϕ→ ψ implies ∆ψ ∈ s}
is responsible for the infinitary axiomatization, and the
completeness proof requires König’s Lemma

Kuhn [Kuhn, 1995] and Zolin [Zolin, 1999]:

The necessity operator, defined by �ϕ =df

∧
ψ∈NCL ∆(ϕ ∨ ψ),

is not really 2. E.g., ϕ→ �¬� ¬ϕ is not valid on the class of
symmetric frames [Zolin, 2001].

The canonical relations in [Kuhn, 1995, Zolin, 1999] at least
do not apply to the reflexive frames, a fortiori, they do not
apply to the symmetric frames [Humberstone, 2002, page 118].
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A uniform method

Key part in the canonical model construction: the definition of
canonical relation.

Definition (Canonical model)

Define Mc = 〈Sc ,Rc ,V c〉 as follows:

Sc = {s | s is a maximal consistent set of NCL}
For all s, t ∈ Sc , sRct iff there exists χ such that:

¬∆χ ∈ s, and
for all ϕ, ∆ϕ ∧∆(χ→ ϕ) ∈ s implies ϕ ∈ t.

V c(p) = {s ∈ Sc | p ∈ s}.

Standard modal logic: sRct iff for all ϕ, 2ϕ ∈ s implies ϕ ∈ t

Almost-definability: ¬∆χ→ (2ϕ↔ ∆ϕ ∧∆(χ→ ϕ))
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Completeness for NCL

Lemma

For all ϕ ∈ NCL and s ∈ Sc , Mc , s � ϕ iff ϕ ∈ s.

Theorem

NCL is complete with respect to the class of K-frames.



Introduction Non-contingency Logic and Almost-definability Bisimulation and Characterization Axiomatizations Multimodal Non-contingency Logic Dynamified Multimodal Non-contingency Logic Conclusion

Axiomatization: extensions

Notation Axiom Schemas Systems

∆T ∆ϕ ∧ ∆(ϕ→ ψ) ∧ ϕ→ ∆ψ NCLT = NCL + ∆T

∆4 ∆ϕ→ ∆(∆ϕ ∨ ψ) NCL4 = NCL + ∆4

∆5 ¬∆ϕ→ ∆(¬∆ϕ ∨ ψ) NCL5 = NCL + ∆5

∆B ϕ→ ∆((∆ϕ ∧ ∆(ϕ→ ψ) ∧ ¬∆ψ) → χ) NCLB = NCL + ∆B

w∆4 ∆ϕ→ ∆∆ϕ NCLS4 = NCLT + w∆4
w∆5 ¬∆ϕ→ ∆¬∆ϕ NCLS5 = NCLT + w∆5

NEC∆ is admissible in NCLB, different from other systems

Completeness results w.r.t. corresponding classes of frames

apply to multimodal cases, except for that of NCLB
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Proof system for the symmetric frames

NCLB: (NB: no need of the rule (NEC∆):
ϕ

∆ϕ
)

TAUT all instances of tautologies
∆Con ∆(χ→ ϕ) ∧∆(¬χ→ ϕ)→ ∆ϕ
∆Dis ∆ϕ→ ∆(ϕ→ ψ) ∨∆(¬ϕ→ χ)
∆Equ ∆ϕ↔ ∆¬ϕ
∆B ϕ→ ∆((∆ϕ ∧∆(ϕ→ ψ) ∧ ¬∆ψ)→ χ)

MP From ϕ and ϕ→ ψ infer ψ
RE∆ From ϕ↔ ψ infer ∆ϕ↔ ∆ψ

Proposition

NCLB is sound with respect to the class of symmetric frames.
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Pseudo-Canonical Model

Definition (Pseudo-Canonical Model)

Define Mc = 〈Sc ,Rc ,V c〉 as follows:

Sc = {s | s is a maximal consistent set of NCLB}
For all s, t ∈ Sc , sRct iff there exists χ such that:

¬∆χ ∈ s, and
for all ϕ, ∆ϕ ∧∆(χ→ ϕ) ∈ s implies ϕ ∈ t.

V c(p) = {s ∈ Sc | p ∈ s}.

Lemma (Pseudo-Truth Lemma)

For all ϕ ∈ NCL and s ∈ Sc , Mc , s � ϕ iff ϕ ∈ s.
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Rc is not symmetric

Proposition

For any s, t ∈ Sc , if sRct and ¬∆χ ∈ t for some χ, then tRcs.

s

��

=⇒ s

��
t // u t //

OO

u

sRct iff there exists χ such that:

¬∆χ ∈ s, and

for all ϕ, ∆ϕ ∧∆(χ→ ϕ) ∈ s implies ϕ ∈ t.
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Turn Mc into a symmetric model

s

��

=⇒ s

��
t t

OO



Introduction Non-contingency Logic and Almost-definability Bisimulation and Characterization Axiomatizations Multimodal Non-contingency Logic Dynamified Multimodal Non-contingency Logic Conclusion

Turn Mc into a symmetric model

s

��

=⇒ s

��
t t

OO

Split the world t:

s

��

u

��

=⇒ s

��

u

��

=⇒ s

��

u

��
t (s, t) (u, t) (s, t)

OO

(u, t)

OO
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Canonical Model of NCLB

Definition

The canonical model M+ of NCLB is a tuple 〈S+,R+, f ,V +〉 where:

S+ = D̄ ∪ {(s, t) | t ∈ D, sRct}

sR+t iff one of the following cases holds:

1 s, t ∈ D̄ and sRct,
2 s ∈ D̄ and t = (s, s ′) ∈ S+,
3 t ∈ D̄ and s = (t, t ′) ∈ S+.

f is a function assigning each state in S+ to a maximal consistent
set in Sc such that f (s) = s for s ∈ D̄, and f ((s, t)) = t for
(s, t) ∈ S+.

V +(p) = {s ∈ S+ | p ∈ f (s)}

where D = {t | t ∈ Sc , ∆χ ∈ t for all χ, and there exists an
s ∈ Sc such that sRct }, where Sc and Rc are defined as in
Definition 25, and D̄ = Sc\D.
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f acts like a surjective bounded morphism

Proposition

1 f is surjective.

2 s and f (s) satisfy the same propositional variables.

3 if s ∈ D̄ then sR+t implies f (s)Rc f (t).

4 if f (s)Rct then there exists u ∈ S+ such that f (u) = t and
sR+u.
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M+ is desired canonical model

Lemma

M+ is symmetric.

Proposition

M+ preserves the truth values of formulas w.r.t. f . That is:
for any s ∈ S+ and any ϕ ∈ NCL, we have

M+, s � ϕ ⇐⇒ Mc , f (s) � ϕ.
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Completeness of NCLB

Theorem

NCLB is (sound and) strongly complete with respect to the class
of symmetric frames.
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Multimodal NCL

Language (i ∈ I, where I is finite)

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | ∆iϕ | 2iϕ

2iϕ: ϕ is necessary for agent i
∆iϕ: ϕ is non-contingent for agent i , i.e., for i , ϕ is
necessarily true or ϕ is necessarily false.

Semantics

M, s � ∆iϕ ⇔ for any t1, t2 such that sRi t1, sRi t2 :
(M, t1 � ϕ⇔M, t2 � ϕ)

Multimodal NCL is not normal

Almost-definability

� ∇iψ → (2iϕ↔ ∆iϕ ∧∆i (ψ → ϕ))
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Proof system for the symmetric frames: Multimodal case

NCLBm

TAUT all instances of tautologies
∆Con ∆i (χ→ ϕ) ∧∆i (¬χ→ ϕ)→ ∆iϕ
∆Dis ∆iϕ→ ∆i (ϕ→ ψ) ∨∆i (¬ϕ→ χ)
∆Equ ∆iϕ↔ ∆i¬ϕ
∆B ϕ→ ∆i ((∆iϕ ∧∆i (ϕ→ ψ) ∧ ¬∆iψ)→ χ)

MP From ϕ and ϕ→ ψ infer ψ
RE∆ From ϕ↔ ψ infer ∆iϕ↔ ∆iψ

Proposition

NCLBm is sound with respect to the class of symmetric frames.
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Pseudo-Canonical Model: again

Definition (Pseudo-Canonical Model)

Define Mc = 〈Sc , {→c
i | i ∈ I},V c〉 as follows:

Sc = {s | s is a maximal consistent set of NCLBm}
For all s, t ∈ Sc , for all i ∈ I, s →c

i t iff there exists χ such
that

1 ¬∆iχ ∈ s, and
2 for all ϕ, ∆iϕ ∧∆i (χ→ ϕ) ∈ s implies ϕ ∈ t.

V c(p) = {s ∈ Sc | p ∈ s}.

Standard multi-modal logic: s →c
i t iff 2iϕ ∈ s implies ϕ ∈ t

Almost-definability: ¬∆iχ→ (2iϕ↔ ∆iϕ ∧∆i (χ→ ϕ))
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Pseudo-Truth Lemma: again

Lemma

For all ϕ ∈ NCL and s ∈ Sc , Mc , s � ϕ iff ϕ ∈ s.
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→c
i is not symmetric

Proposition

For any s, t ∈ Sc and any i ∈ I, if s →c
i t and t →c

i t ′ for some
t ′ ∈ Sc , then t →c

i s.

The canonical model for NCLB cannot be generalized into
NCLBm

The dead ends are relative to the agents

A dead end for agent j may be not a dead end for agent i

Need new strategy
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New Strategy: turn Mc into a symmetric model

Enumerate all of the agents in I as 1, 2, 3, · · · ,m. Starting from
M0 =Mc (we may as well assume that Mc has run out of Prop.
27), we construct the desired model (call it Mm) in m steps.

In each step we tackle the dead ends for that agent, by
replacing those dead ends with some new copies of themselves
such that each copy has only one incoming transition for that
agent and then adding the back arrows for the agent

while keeping all the arrows for the other agents in place, with
corresponding replacements for the dead ends. We have to
provide that

1 In each step, the accessibility relation for that agent is
symmetric,

2 The symmetry of the previous relation for a fixed agent is not
broken, which guarantee Mm to be symmetric

3 Each step preserves the truth values of formulas
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An example

s

1,2

��

1

��

s
2

�� 1xx

1

##
t u

2
oo Step 1

=⇒ (s, t)

88

(s, u)
2

oo

cc

(s, (s, t))
1,2 // soo

1
yy

1

��
Step 2
=⇒ ((s, u), (s, t))

99

// (s, u)
2
oo

OO
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Canonical model Mm of NCLBm

Definition

Define Mm = 〈Sm, {→m
i | i ∈ I}, f m,V m〉 by induction on n ≤ m:

S0 = Sc

Sn = D̄n ∪ {(s, t) | t ∈ Dn and s →n−1
n t}, where

Dn = {t | t ∈ Sn−1, there is no t ′ ∈ Sn−1 such that t →n−1
n

t ′ and there exists an s ∈ Sn−1 such that s →n−1
n t},

D̄n = Sn−1\Dn
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Canonical model Mm of NCLBm

Definition (Cont’)

Define Mm = 〈Sm, {→m
i | i ∈ I}, f m,V m〉 by induction on n ≤ m:

→0
n=→c

n

s →n
n t iff one of the following cases holds:

1 s, t ∈ D̄n and s →n−1
n t,

2 s ∈ D̄n and t = (s, s ′) ∈ Sn,

3 t ∈ D̄n and s = (t, t ′) ∈ Sn.

For i 6= n, s →n
i t iff one of the following cases holds:

1 s, t ∈ D̄n and s →n−1
i t,

2 s ∈ D̄n and t = (s ′′, s ′) ∈ Sn and s →n−1
i s ′,

3 t ∈ D̄n and s = (t ′′, t ′) ∈ Sn and t ′ →n−1
i t,

4 s = (w , v) ∈ Sn and t = (w ′, v ′) ∈ Sn and v →n−1
i v ′.
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Canonical model Mm of NCLBm

Definition (Cont’)

Define Mm = 〈Sm, {→m
i | i ∈ I}, f m,V m〉 by induction on n ≤ m:

f n+1 is a function from Sn+1 to Sn such that f n+1(s) = s for
s ∈ D̄n+1, and f n+1((s, t)) = t for (s, t) ∈ Sn+1

V 0(p) = {s ∈ Sc | p ∈ s} and
V n+1(p) = {s ∈ Sn+1 | f n+1(s) ∈ V n(p)}
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Properties of f n+1

Proposition (Preservation)

Given any s, t ∈ Sn+1. If f n+1(s)→n
i f n+1(t), then

1 If i 6= n + 1, then s →n+1
i t.

2 If i = n + 1, then for some t ′ ∈ Sn+1 such that s →n+1
i t ′ and

f n+1(t) = f n+1(t ′).

Proposition (No Miracle)

Given any s, t ∈ Sn+1.

1 If i 6= n + 1, then s →n+1
i t implies f n+1(s)→n

i f n+1(t).

2 If i = n + 1 and s ∈ D̄n+1, then s →n+1
i t implies

f n+1(s)→n
i f n+1(t).

For every n ∈ [0,m − 1], f n+1 is surjective!
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Mm is symmetric

Proposition

Mm is symmetric. That is, for all i ∈ [1,m], →m
i is symmetric:

1 For every n ∈ [1,m], →n
n is symmetric.

2 If →n
i is symmetric, then →n+1

i is also symmetric.
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Truth-preserving in each step

Proposition

For any n ∈ [0,m − 1], any s ∈ Sn+1, and any ϕ ∈ NCL,

Mn+1, s � ϕ⇐⇒Mn, f n+1(s) � ϕ.
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Completeness of NCLBm

Define f = f 1 ◦ f 2 ◦ · · · ◦ f m.

f : Sm → S0 is surjective.

For any s ∈ Sm and any ϕ ∈ NCL, we have

Mm, s � ϕ⇐⇒ ϕ ∈ f (s)

Theorem

NCLBm is strongly complete with respect to the class of
symmetric frames.
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Dynamified multimodal NCL

Adding public announcements:

[ϕ]∆iψ ↔ (ϕ→ (∆i [ϕ]ψ ∨∆i [ϕ]¬ψ))

Adding action models:

[M, s]∆iψ ↔ (pre(s)→
∧
s→it

(∆i [M, t]ψ ∨∆i [M, t]¬ψ))

Completeness, Decidability
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Comparison with the known axiomatizations

1 Our system NCL is closest to Kuhn’s K∆, except that our
axiom ∆Con differs from axiom ∆ϕ ∧∇(ϕ ∧ ψ)→ ∇ψ there.

2 Our proof method is based on the almost-definability schema,
which is very different from the methods used in the literature.

3 Almost-definability schema also inspires a notion of
bisimulation for NCL (called ‘∆-bisimulation’) and two
characterization fragments

4 We really define necessity in terms of non-contingency in the
general sense.

5 Our method can work for all the usual frame properties in a
rather uniform fashion, among which the cases for symmetric
axiomatizations are highly non-trivial, which were missing in
the literature.

6 We extend the results to public announcements and action
models, which were not discussed in the literature of
non-contingency logic.
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Conclusion

1 Almost-definability schema ∇ψ → (2ϕ↔ ∆ϕ ∧∆(ψ → ϕ))

2 ∆-bisimulation and two characterization fragments

3 Axiomatizations of NCL over various frames, via a rather
uniform method, where the cases for symmetric frames are
highly non-trivial

Unimodal

Multimodal

4 Dynamic extensions of NCL

5 Comparison with the known axiomatizations
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Future work

1 Contingency logic and other semantics, such as neighborhood
semantics (a manuscript under submission with Hans van
Ditmarsch), topological semantics (c.f. [Steinsvold, 2008])

2 The relative succinctness of NCL and ML on S5 (in the K
case, see [van Ditmarsch et al., 2014]).

3 Contingency syllogisms, Contingency logic and First-order
logic (c.f. [Brogan, 1967, Béziau, 2000, Read, 2012])

4 Contingency logic and Temporal operators, e.g. future
contingents

5 Contingency logic and Epistemology concepts, such as
Knowledge, Belief [Costa-Leite, 2007] (general frame classes),
Ignorance [van der Hoek and Lomuscio, 2004] and Knowing
whether [Fan et al., 2013]

6 Common ignorance, or common knowing whether
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Future work (cont’)

Arbitrary Knowing Whether Logic (an ongoing joint work with
Hans van Ditmarsch)

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ∆ϕ | �ϕ

Related to Arbitrary Public Announcement Logic
[Balbiani et al., 2007, Balbiani et al., 2008,
Balbiani and van Ditmarsch, 2014]

M, s � �ϕ iff there is a �-free ψ such that M, s � 〈!ψ〉ϕ
Related to Fitch’s Knowability Paradox: � ϕ→ �2ϕ?

2 ϕ→ �2ϕ, e.g., Moore-sentence p ∧ ¬2p

� �(2ϕ ∨2¬ϕ) [van Ditmarsch et al., 2012]

For every proposition we can get to know whether it is true.

� �∆ϕ (equivalently, � ¬�∇ϕ)

AKW Expressivity? Axiomatization? Decidability?
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Future work (cont’)

Various kinds of knowledge and their logical representations
(beyond ‘knowing that’):

Knowing Whether [Fan et al., 2013]

5W1H

Knowing What [Wang and Fan, 2013, Wang and Fan, 2014]
Knowing Who
Knowing When
Knowing Where
Knowing Why
Knowing How
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Publications and Submissions

Publications:
1 J. Fan, Y. Wang and H. van Ditmarsch. Almost Necessary.

Advances in Modal Logic, Volume 10, pages 178-196, 2014.
2 H. van Ditmarsch, J. Fan, W. van der Hoek, P. Iliev. Some

Exponential Lower Bounds on Formula-size in Modal Logic.
Advances in Modal Logic, Volume 10, pages 139-157, 2014.

3 Y. Wang and J. Fan. Conditionally Knowing What. Advances
in Modal Logic, Volume 10, pages 569-587, 2014.

4 Y. Wang and J. Fan. Knowing That, Knowing What, and
Public Communication: Public Announcement Logic with Kv
Operators, Proc. of 23rd IJCAI, pages 1147-1154, 2013.

5 J. Fan, Y. Wang and H. van Ditmarsch. Contingency and
Knowing Whether. To appear in The Review of Symbolic
Logic.

6 Y. Wang and J. Fan. Epistemic Informativeness. To appear in
the Proceedings of the Second Asian Workshop on
Philosophical Logic.
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Publications and Submissions (cont’)

Submissions:
1 J. Fan and H. van Ditmarsch. Neighborhood Contingency

Logic. Submitted to Indian Conference on Logic and its
Applications (ICLA 2015), August 2014.
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CELLO, LORIA-CNRS/Université de Lorraine

Computational Epistemic Logic in LOrraine, led by Hans van
Ditmarsch, who is the holder of ERC starting grant 313360 EPS,
called Epistemic Protocol Synthesis.
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Activities

personal meeting between Hans van Ditmarsch and I, for my
research progress (once a week)

CELLO group meeting, for Hans’s project (once a week)

Academic conferences

10th Advances in Modal Logic (AiML 2014), August 5 –
August 8, University of Groningen, The Netherlands.
Presentation “Almost Necessary”.
26th European Summer School in Logic, Language and
Information (ESSLLI 2014), August 11 – August 22, University
of Tübingen, Germany.
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PKU & RuG: AiML 2014
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Thank you for your attention!
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Béziau, J.-Y. (2000).
New light on the square of oppositions and its nameless
corner.



Introduction Non-contingency Logic and Almost-definability Bisimulation and Characterization Axiomatizations Multimodal Non-contingency Logic Dynamified Multimodal Non-contingency Logic Conclusion

manuscript.

Brogan, A. (1967).
Aristotle’s logic of statements about contingency.
Mind, 76(301):49–61.

Costa-Leite, A. (2007).
Interactions of metaphysical and epistemic concepts.
PhD thesis, Université de Neuchâtel.
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